
THE ESSENTIAL
GUIDE TO
CONTAINER
MONITORING

32

Since the introduction of the concept in 2013, containers

have become the buzz of the IT world. It’s easy to see why:

Application container technology is revolutionizing app

development, bringing previously unimagined flexibility and

efficiency to the development process.

Businesses are embracing containers in droves. According to

Gartner, more than half of global enterprises will be running

containerized applications in production by 2020, up from less

than 20 percent today. And IDC predicts by 2021, more than 95

percent of new microservices will be deployed in containers. That

mass adoption makes it clear that organizations need to adopt a

container-based development approach to stay competitive.

To that end, let’s look at what’s involved with containerization

and how your organization can leverage it to gain an edge.

THE ESSENTIAL
GUIDE TO
CONTAINER
MONITORING

THE ESSENTIAL GUIDE TO CONTAINER MONITORING

https://www.gartner.com/smarterwithgartner/6-best-practices-for-creating-a-container-platform-strategy/
https://www.idc.com/getdoc.jsp?containerId=prUS43185317

54

The easiest way to understand the concept of a container is to

consider its namesake. A physical container is a receptacle used

to hold and transport goods from one location to another.

A software container performs a similar function. It allows you

to package up an application’s code, configuration files, libraries,

system tools, and everything else needed to execute that app

into a self-contained unit so you can move and run it anywhere.

Further, containers enable a “microservices” approach that

breaks applications down into single-function modules that are

accessed only when they’re needed. This allows a developer to

modify and redeploy a particular service rather than the whole

application whenever changes are required.

WHAT IS A
CONTAINER?

THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

76

required to run them, including libraries and system binaries,

are contained in the guest machine. Each guest machine also

includes a complete operating system of its own. So a server

running four VMs, for example, would have four operating

systems in addition to the hypervisor coordinating them all.

That’s a lot of demand on a one machine’s resources, and things

can bog down in a hurry, ultimately limiting how many VMs a

single server can operate.

Containers, on the other hand, abstract at the operating system

level. A single host operating system runs on the host (this can

be a physical server, VM, or cloud host), and the containers —

using a containerization engine like the Docker Engine — share

that OS’s kernel with other containers, each with its own isolated

user space. There’s much less overhead here than with a virtual

machine, and as a result, containers are far more lightweight and

resource efficient than VMs, allowing for much greater utilization

of server resources.

THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

WHY ARE
CONTAINERS
SUCH A BIG DEAL?

Containers remedy an all-too-common problem in IT operations:

getting software to run reliably and uniformly no matter

where it is deployed. As an app is moved from one computing

environment to another — from staging to production, for

example — it can run into problems if the operating system,

network topology, security policies or other aspects of the

environment are different. Containers isolate the app from its

environment, abstracting away these environmental differences.

Prior to containers, virtual machines (VMs) were the primary

method for running many isolated applications on a single

server. Like containers, VMs abstract away a machine’s

underlying infrastructure so that hardware and software

changes won’t affect app performance. But there are significant

differences to how each does this.

A VM abstracts hardware to turn a physical server into several

virtual ones. It does so by running on top of a hypervisor, which

itself runs on a physical computer called the “host machine.” The

hypervisor is essentially a coordination system that emulates

the host machine’s resources —CPU, RAM, etc.— making them

available to the VM or “guest machine.” The apps and everything

98 9

5 BENEFITS
OF DEPLOYING
CONTAINERS

A container-based infrastructure offers a host of benefits. Here

are the five biggest.

1. Speed of delivery—Applications installed on a virtual machine

typically take several minutes to launch. Containers don’t have

to wait for an operating system boot, so they start up in a

fraction of a second. They also run faster since they use fewer

host OS resources, and they only take a few seconds to create,

clone or destroy. All of this has a dramatic impact on the

development process, allowing organizations to more quickly

get software to market, fix bugs and add new features.

2. DevOps first—Containers’ speed, small footprint, and

resource efficiency make them ideal for a DevOps

environment. A container-based infrastructure enables

developers to work as quickly and efficiently as possible on

their preferred platform without having to waste time on non-

business-critical tasks.

3. Accessibility—As mentioned earlier, containers pack up

only the app and its dependencies. That makes it easy to

move and reliably run containers on Windows, Linux or Mac

hardware. Containers can run on bare metal or on virtual

servers, and within public or private clouds. This also helps

avoid vendor lock-in should you need to move your apps

from one public cloud environment to another.

4. Increased scalability—Containers tend to be small because

they don’t require a separate OS the way that VMs do. One

container is typically sized on the order of tens of megabytes,

whereas a single VM can be tens of gigabytes — roughly

1,000 times the size of a container. That efficiency allows

you to run many more containers on a single host operating

system, increasing scalability.

5. Consistency—Because containers retain all dependencies

and configurations internally, they ensure developers are able

to work in a consistent environment regardless of where the

containers are deployed. That means developers won’t have

to waste time troubleshooting environmental differences

and can focus on addressing new app functionality. It also

means you can take the same container from development to

production when it’s time to go live.

THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

1110 11THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

KUBERNETES AND
CONTAINERS 101

To get started with container orchestration, you need specialized

software to deploy, manage and scale containerized applications.

One of the earliest and most popular choices today is Kubernetes,

an open-source automation platform developed by Google and

now managed by the Cloud Native Computing Foundation.

Kubernetes can dramatically enhance the development process

by simplifying container management, automating updates, and

minimizing downtime so developers can focus on improving and

adding new features to applications. To better understand how, let’s

look at Kubernetes’ basic components and how they work together.

Kubernetes uses multiple layers of abstraction defined within

its own unique language. There are many parts to Kubernetes.

This list isn’t exhaustive, but it provides a simplified look at how

hardware and software is represented in the system.

Nodes: In Kubernetes lingo, any single “worker machine” is a node. It

can be a physical server or virtual machine on a cloud provider such

as AWS or Microsoft Azure. Nodes were originally called “minions,”

which gives you an idea of their purpose. They receive and perform

tasks assigned from the Master Node and contain all the services

required to manage and assign resources to containers.

Master Node: This is the machine that orchestrates all the

worker nodes and is your point of interaction with Kubernetes.

All assigned tasks originate here.

Cluster: A cluster represents a master node and several worker

nodes. Clusters consolidate all of these machines into a single,

powerful unit. Containerized applications are deployed to a

cluster, and the cluster distributes the workload to various

nodes, shifting work around as nodes are added or removed.

Pods: A pod represents a collection of containers packaged

together and deployed to a node. All containers within a pod

share a local network and other resources. They can talk to each

other as if they were on the same machine, but they remain

isolated from one another. At the same time, pods isolate

network and storage away from the underlying container.

A single worker node can contain multiple pods. If a node

goes down, Kubernetes can deploy a replacement pod to a

functioning node.

Despite a pod being able to hold many containers, it’s

recommended they wrap up only as many as needed: a main

process and its helper containers, which are called “sidecars.”

Pods scale as a unit no matter what their individual needs are

and overstuffed pods can be a drain on resources.

Deployments: Instead of directly deploying pods to a cluster,

Kubernetes uses an additional abstraction layer called a

“deployment.” A deployment enables you to designate how many

replicas of a pod you want running simultaneously. Once it deploys

that number of pods to a cluster, it will continue to monitor them

and automatically recreate and redeploy a pod if it fails.

Ingress: Kubernetes isolates pods from the outside world, so you

need to open a communication channel to any service you want

to expose. This is another abstraction layer called Ingress. There

are a few ways to add ingress to a cluster, including adding a

LoadBalancer, NodePort or Ingress controller.

131312

Being familiar with the fundamental components of Kubernetes

should give you some idea of how the system approaches

container orchestration, but a deeper understanding requires

visualizing each of these components in action. Here we will

look at how to use Kubernetes to deploy an app to a cluster

on Google Cloud using an example put together by Google

Engineer Daniel Sanche.

Sanche’s tutorial uses Gitea, an open-source git hosting

service, as the deployed app, but as he notes this walkthrough

could be employed using virtually any app.

Create a cluster

Two commands are critical when setting up a Kubernetes

environment: kubectl and gcloud. kubectl is the primary tool for

interacting with the Kubernetes API and is used to create and

manage software resources such as pods and deployments.

However, because Kubernetes is platform-agnostic, the kubectl

command can’t provision nodes directly from your chosen

cloud provider, so a third-party tool is needed. If Google Cloud

is your provider, for example, you could use Google Kubernetes
Engine’s gcloud command to provision your nodes.

Once you’ve set up your Kubernetes environment, these

commands are used to create a default cluster of three nodes:

gcloud container clusters create my-cluster --zone us-

west1-a

gcloud container clusters get-credentials my-cluster \

--zone us-west1-a

Your cluster will now be visible within the GKE section of the

Google Cloud Console. The VMs you’ve provisioned as your

nodes will appear in the GCE section.

WHAT DOES A TYPICAL
KUBERNETES
DEPLOYMENT
LOOK LIKE?

THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart

1514 THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

Deploy an app

Now you can start assigning resources to your live cluster.

Though you can do this interactively with the kubectl add

command, Sanche recommends doing it by writing all of your

Kubernetes resources in YAML files. This allows you to record

the entire state of your cluster in easily maintainable files with

all the instructions required to host your service saved alongside

the actual code, which makes for simpler management.

To add a pod to your cluster using a YAML file, create a file

called gitea.yaml with the following contents:

apiVersion: v1

kind: Pod

metadata:

name: gitea-pod

spec:

containers:

 - name: gitea-container

 image: gitea/gitea:1.4

This code declares that you’re creating a pod — named “gitea-

pod” — defined in v1 of the Kubernetes API. It contains one

container called “gitea-container.” The final line defines which

container image you want to run. Here the image is the one

tagged as 1.4 in the gitea/gitea repository. Kubernetes tells the

built-in container runtime to locate this container image and

add it to the pod.

Next, apply the YAML file to the cluster by executing this

command: kubectl apply -f gitea.yaml.

Kubernetes will read the file and add the pod to the cluster.

You can see the new pod by running the kubectl get pods

command. This will return data about the status of the pod,

whether it has restarted, and how long it has been running.

You can also view the container’s standard output by running

the command kubectl logs -f gitea-pod, which will return

something like this:

Generating /data/ssh/ssh_host_ed25519_key...

Feb 13 21:22:00 syslogd started: BusyBox v1.27.2

Generating /data/ssh/ssh_host_rsa_key...

Generating /data/ssh/ssh_host_dsa_key...

Generating /data/ssh/ssh_host_ecdsa_key...

/etc/ssh/sshd_config line 32: Deprecated option

UsePrivilegeSeparation

Feb 13 21:22:01 sshd[12]: Server listening on :: port 22.

Feb 13 21:22:01 sshd[12]: Server listening on 0.0.0.0 port 22.

2018/02/13 21:22:01 [T] AppPath: /app/gitea/gitea

2018/02/13 21:22:01 [T] AppWorkPath: /app/gitea

2018/02/13 21:22:01 [T] Custom path: /data/gitea

2018/02/13 21:22:01 [T] Log path: /data/gitea/log

2018/02/13 21:22:01 [I] Gitea v1.4.0+rc1-1-gf61ef28 built

with: bindata, sqlite

2018/02/13 21:22:01 [I] Log Mode: Console(Info)

2018/02/13 21:22:01 [I] XORM Log Mode: Console(Info)

2018/02/13 21:22:01 [I] Cache Service Enabled

2018/02/13 21:22:01 [I] Session Service Enabled

2018/02/13 21:22:01 [I] SQLite3 Supported

2018/02/13 21:22:01 [I] Run Mode: Development

2018/02/13 21:22:01 Serving [::]:3000 with pid 14

2018/02/13 21:22:01 [I] Listen: http://0.0.0.0:3000

1716

Deployment

As discussed earlier, it’s not typical to deploy pods directly in

Kubernetes but rather to use the Deployment abstraction layer

instead. To do this, you’ll need to take a step back and delete

the pod previously created with the kubectl delete -f gitea.yaml

command so you can recreate it through the Deployment layer.

Next, go back to the YAML file you originally created and alter

as shown below:

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: gitea-deployment

spec:

replicas: 1

selector:

matchLabels:

app: gitea

template:

metadata:

labels:

app: gitea

spec:

containers:

name: gitea-container

image: gitea/gitea:1.4

The first nine lines of this code define the deployment itself and

the rest define the template of the pod the deployment will

manage. Line 6 (replicas) is the most critical information, as it

tells Kubernetes how many pods you want to run.

Now you can apply the modified YAML file with the command

kubectl apply -f gitea.yaml.

Type kubectl get pods again to see the running pod(s). To verify

the deployment information, enter kubectl get deployments.

One of the advantages of Kubernetes deployments is that if a

pod goes down or is deleted, it will automatically be redeployed.

To see that in action, delete the pod you just deployed by typing

kubectl delete pod <podname> and you should see a new one

added to your cluster.

For more information on deploying an app, adding ingress so

you can access it through a browser, and more, take a look at

Sanche’s complete tutorial.

THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

https://medium.com/google-cloud/kubernetes-110-your-first-deployment-bf123c1d3f8

1918

For all the benefits that containers bring to IT organizations,

they can also make cloud-based application management more

complex. Some of the challenges they present include:

• Significant Blind Spots—Containers are designed to be

disposable. Because of this, they introduce several layers

of abstraction between the application and the underlying

hardware to ensure portability and scalability. This all

contributes to a significant blind spot when it comes to

conventional monitoring.

• Increased Need to Record—The easy portability of so many

interdependent components creates an increased need to

maintain telemetry data to ensure observability into the

performance and reliability of the application, container and

orchestration platform.

• The Importance of Visualizations—The scale and complexity

introduced by containers and container orchestration

requires the ability to both visualize the environment to gain

immediate insight into your infrastructure health but also

be able to zoom in and view the health and performance of

containers, node and pods. The right monitoring solution

should provide this workflow.

• Don’t Leave DevOps in the Dark—Containers can be scaled and

modified with lightning speed. This accelerated deployment

pace makes it more challenging for DevOps teams to track how

application performance is impacted across deployments.

A good container monitoring solution will enable you to stay on

top of your dynamic container-based environment by unifying

container data with other infrastructure data to provide better

contextualization and root cause analysis. Let’s look at how one

could provide several layers of monitoring for Docker, the most

popular container implementation:

Hosts: The physical and virtual machines in your clusters can

be monitored for availability and performance. Key metrics to

track include memory, CPU usage, swap space used and storage

utilization. This should be a core capability of any container

monitoring tool.

Containers: Visibility into your containers in aggregate and

individually is critical. A monitoring tool can provide information

on the number of currently running containers, the containers

using the most memory and the most recently started container.

It can also provide insight into each container CPU and memory

utilization and the health of its network I/O.

Application endpoints: In a typical container-based

environment, each application service will be running on one

or more containers. Ideally, application monitoring should be

performed at the level of the container, pod and whole system.

HOW DO YOU
MONITOR CONTAINERS
EFFECTIVELY?

THE ESSENTIAL GUIDE TO CONTAINER MONITORING THE ESSENTIAL GUIDE TO CONTAINER MONITORING

© 2019 Splunk Inc. All rights reserved. Splunk, Splunk>, Listen to Your Data, The Engine for Machine Data,Splunk Cloud, Splunk
Light and SPL are trademarks and registered trademarks of Splunk Inc. in the United States and other countries.

EB-Splunk-the-Essential-Guide-to-Container-Monitoring-102

GETTING STARTED.
Containers are a powerful tool in your development
arsenal, but it’s critical to understand how and how well
your container environments are working. For more
information, visit us online to see how we can help you get
started with containers, orchestration and monitoring.

https://www.splunk.com/en_us/it-operations/container-monitoring.html%0A

